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(4) ATBs were preferred in the polycrystal rather 
than STBs [except for the (I 11) ~ = 3 STB] or TGBs. 
In particular, ATBs in the ~ = 3 system in the (011) 
zone and closer to the (111) STB than the (112) STB 
occurred frequently. These occurrences could be 
explained in terms of grain-boundary energy con- 
siderations. 
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Abstract 

The estimate formulas for the two-phase structure 
seminvariants (TPSSs) in the presence of anomalous 
scattering are obtained from the estimate of the 
two-phase structure invariants [Hauptman (1982). 
Acta Cryst. A38, 632-641; Giacovazzo (1983). Acta 
Cryst. A39, 585--592] and the conditional probability 
distribution of the TPSSs is derived from the neigh- 
borhood theory [Hauptman (1975). Acta Cryst. A31, 
680-687]. A procedure for estimating the one-phase 
structure seminvariants near 0 or rr (OPSSs) is pro- 
posed, based on the TPSS estimates. Test results for 
known structures with error-free data show accurate 
estimates for the TPSSs, even in the macromolecular 
case. For the OPSSs, the accuracy is related to the 
strength of anomalous scattering by heavy atoms in 
the macromolecular case. The incorporation of the 
heavy-atom information improves the results. 

1. Introduction 

In about the past ten years, the combination of 
traditional direct methods with anomalous disper- 
sion has been extensively studied to improve the 
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methods for phase determination of macromolecular 
structures. Hauptman (1982b) proposed the proba- 
bilistic theory of the two- and three-phase structure 
invariants by integrating anomalous-dispersion 
effects into the neighborhood concept. Giacovazzo 
(1983) also obtained a similar result by a different 
route. Fortier, Fraser & Moore (1986) later re- 
examined the theoretical basis for this approach and 
obtained more-accurate three-phase-invariant esti- 
mates by the use of anomalous-scatterer substructure 
information. Subsequently, Hao & Fan (1988) pre- 
sented a method for the individual phase estimates 
by the incorporation of heavy-atom information into 
Hauptman's distribution. 

The estimate of the two-phase structure invariants 
(TPSIs) arose from the joint probability distribution 
of the Friedel pair EH and E~ in the presence of 
anomalous scattering. The practical application of 
this result has been suggested by Cascarano & 
Giacovazzo (1984). Further studies of the TPSIs can 
be found in other publications (Guo & Hauptman, 
1989; Guo, 1990; Guo, Blessing & Hauptman, 1991). 

In research into structure seminvariants, 
Velmurugan & Hauptman (1989) derived the condi- 
tional probability distribution for the OPSSs having 
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Table 1. The types of Hi and n values for the monoclinic and orthorhombic systems 

H-K group 
Monoclinic system 

(h,k,l)-P(2,0,2) 

(h,k,l)-P(0,2,0) 

Orthorhombic system 

H,. Space group and n 

P2 P2m 
h 'k  l 0 k 

Pm Pc 
h k l  0 l 

/222 P2221 P2t212 
h k i  0 0 h + k  

(h,k,l)-P(2,2,2) h ~c 1 0 l h + k 
h k l "  0 1 0 

Prom2 Pmc2~ Pcc2 Pma2 Pca2~ Pnc2 
hk_.( 0 l 0 0 1 0 

(h,k,l)-P(2,2,0) h k l 0 0 l h 1 + h k + 1 
h k l  0 l l h h k + l  

P212121 
h + k  
k + l  
l + h  

Pmn21 
l + h  

0 
l + h  

~ a 2  P~21 ~n2  
0 1 0 

h + k  h + k + !  h + k + l  
h + k  h + k  h + k + l  

values near 0 or ~r in the presence of anomalous 
scattering by embedding the OPSSs into the three- 
phase structure invariants and gave the results of its 
applications (Velmurugan, Hauptman & Potter, 
1989). These works clearly indicate that the fusion of 
direct methods with anomalous dispersion will facil- 
itate the solution of those crystal structures that 
contain one or more anomalous scatterers. In this 
paper, the estimate for the TPSIs developed by Hau- 
ptman is extended to the TPSSs and, further, the 
OPSS (near 0 or 70 estimates are realized by combin- 
ing the formulas for the TPSSs with Cochran's distri- 
bution for the triplet phase relationship (Cochran, 
1955). The estimate formulas for both the TPSSs and 
OPSSs were tested with error-free diffraction data. 

2. Theoretical  basis 

2.1. The formulas for the TPSS estimate 

According to Hauptman (1982b), the probabilistic 
estimate of the TPSI for a crystal with anomalous 
scatterers at one wavelength is 

~OH + ~ n  = -~ : .  (1) 

The quantity s ~ is defined by 

tan ~: = --SH/C H (2) 

with 
N 

CH = Z If Hl cos 28,., (3) 
j = l  

N 

SH = (1/o~H) • IfJ.l = sin 28 m, (4) 
j = l  

N 

"H-- E Ifj.l =, (5) 
j=l 

where N is the number of atoms in the unit cell and 
--f)H + f / +  ~ " ,  is the atomic scattering factor, f j H -  0 

expressed as 

= If HI exp (iBm). (6) 

The estimate (1) is reliable in the case that the 
variance of the distribution is small. Now, assume 
that a crystal belongs to a given noncentrosymmetric 
space group with m equivalent positions. The rela- 
tionship between the phases of equivalent reflections 
is known (Waser, 1955): 

~H = ~u, + 27rH" Ti (i = 1,2,...,m), (7) 

where Hi is the ith equivalent vector of H in recipro- 
cal space and Ti is the translation vector of the ith 
equivalent position in direct space. With (7), (1) can 
be written as 

~n + ~n,----nTr- (, (8) 

where 

n = 2H" Ti (i = 1,2,...,m). (9) 

Since ~PH + tPn in (1), which corresponds to i = 1 in 
(8), is a TPSI, ~n + ~n, (i = 2,...,m) in (8), derived 
from the equivalent transformation of ~p~, must be a 
TPSS for the given space group. When i changes 
from 2 to m, we can obtain different types of TPSS 
of this space group. Clearly, (8) and (9), the estimate 
formulas for the TPSSs are suitable for all noncen- 
trosymmetric space groups. 

It is well known that the space groups with the 
same structure seminvariants belong to the same 
H-K (Hauptman-Karle) group. For each H-K 
group, the l-L's can be divided into 1-4 sets (only one 
set for the monoclinic and orthorhombic systems) 
according to the equivalent positions. There are 
m - 1 types of Hi in each set. Table 1 lists the types 
of l-Ii and n values for the monoclinic and ortho- 
rhombic systems. 

2.2. The probabilistic background of the TPSS 
estimate 

The formulas (8) and (9) are derived from the joint 
probability distribution followed by the conditional 
probability distribution of the TPSS according to 
Hauptman's (1975) neighborhood theory. 
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Assume again that the number of equivalent 
positions is m for a given space group. Then, as 
described above, qt = ~on + ~0~ k is a T P S S  involving 
the kth equivalent vector of H and its first 
neighborhood is defined to consist of the two magni- 
tudes IE.I and lEa because IEul- IE ,. In the pres- 
ence of anomalous scatterers, the normalized 
structure factor is defined by 

N 
E n = ( 1 / a ~  2) X f j n l e x p [ i ( r m  + 2 z r H ' O ] .  (10) 

j = l  

Replacing H by Hk in (10) and noticing that f in = 
fj~, ,  we have 

N 

Effk=(1 /a~  2) ~' Ifsnlexp[i(rjn- 2,rrHk'rj)]. (11) 
j = l  

Suppose that the reciprocal-lattice vector H is fixed; 
the atomic position vectors rj are assumed to be the 
primitive random variables, which are uniformly dis- 
tributed in the unit cell. Then, EI-I and E~,, as 
functions of the primitive random variables, are 
themselves random variables. Let 

Rl = EHI, ~1 = ~0H, R2 = lEa, l, 62 = ~P~,; 

the joint probability distribution of the magnitudes 
IE.I, IEu, I and the phases ~on, ~Pn, of the structure 
factors EI-I, Eft, is given by the fourfold integral 
(Karle & Hauptman,  1958) 

P(Ri,RE;dPl,dPE) [R,R2/(27r) 4] ? E~. = f PIPE 
pl,PE= 0 01,02=0 

x e x p { - i [ R l p l  cos ( 0 1 -  ~bl) 

+ REP2 COS (02 -- ~bE)]} 
N/m 

X [-I q j (p l , p z ;O l ,OE)dp ldpzdOld02 ,  
j = l  

(12) 

where 

qj(Pl,PE;Ol,02) 

= ( exp {(ilfy a 1/2)[p 1 cos(Sj + 21rH" r j -  0 l) 

+ Pl cos (~j+ 2zrH" RE" r j +  2zrH" T2 - 01) 

+ ... + Pl cos ( r j+  2rrH" Rm" rj+ 2zrH" Tm - 01) 

+ P2 cos ( r j -  2 ~rHk" r j -  02) 

+ P2 cos ( r j -  2ZrHk • R2" r j -  27rHk • T2 - 02) 

+...  + P2 cos ( ~ j -  2zrHk • Rm" rj 

- 27rHk • T m - OE)]})r j. (13) 

From the work of Hauptman (1982a), 

q.i(P,,pE;Ol,02) = 1 -{(IfjlE/a)[(m/4)(pEi + p~) 

+ (m/2)plPE COS (2~j + 2rrH" Tk 

-- 0 1 -  02)]} 

and 
N/m 
I-I qj(Pl ,P2;01,02)  

j = l  

--exp[-- __ 2[(p 1 , E + pE)]exp[_½PlpEX 

x cos (gr + 2zrH" Tk -- 01 -- 02)], (14) 
where 

X =  (C~ + $2)  1/2 (15) 

and ~, Cn and Sri are defined by (2), (3) and (4). 
Substitution of (14) into (12) and completion of 

the fourfold integral give 

P(RI,RE;q~I,q~2) = [R,RE/'n'2( 1 - XE)] 

× exp { - [ ( g  2 + RE)/(1 - X2)] 

+ [EXRIRE/(1 - xE)] 

X COS (~bl + ~bE-- 2 7 r n ' T k  + 0}. 
(16) 

From (16), when RI and R E a re  given, the condi- 
tional probability distribution of 0 = q~n + q~n, is 

P(d//RI,RE) = [27rio(A)] - I  exp[A cos (0  - nqr + so)], 

(17) 
where 

n = 2H" Tk, (18) 

A = 2XR1RE/(1 - X 2) (19) 

and Io is the modified Bessel function. Since (17) has 
a unique maximum at 0 = nTr - s c, it follows that 

~0n + q ~ , - - n T r -  ( (20) 

provided that the variance of the distribution (17) is 
small, i.e. A is large. Equations (20) and (18) jus t  
correspond to (8) and (9) when i = k, suitable for all 
noncentrosymmetric space groups. 

2.3. The estimates o f  the O P S S s  

According to Cochran (1955), the conditional 
probability distribution of ~on for a set of triplet 
structure invariants of the form ~on- ~on,- ~on_ n, 
given IEn[, En, and En_  n, is 

P( q~n) = [2 rrlo( x)] -1 

where 

x = 2~r3cr£ 3/EIEnErI,EH - I-r[, 

N 

~ . =  2 z 7  
j=l  

and Zj is the atomic number of the j th  atom in the 
unit cell. 
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Suppose now that ~0H, is an OPSS and q~H + ~0~, a 
TPSS, which are related to each other by 

H~ = H + H, (i = 2,...,m). (22) 

In (22), H corresponds to the index hkl and thus the 
index type of I-L depends upon that of Hi, which is 
given in Table 1. If EHJ, IEH[, IEn, I and ~OH + ~'n, are 
given, using (21) we have 

P( ~OH) = [ 2"n'Io( K) ] - ' 

X exp [ Z K cos (~0Hs 

where 

- ~ o a -  q~ , ) ] ,  (23) 

K = 20"30" 2 3/2[EHEHE~. (24) 

The summation over p involves those pairs of reflec- 
tions (H, Hi) that satisfy (22) and have larger [E~ 
values. 

In addition, following Hauptman (1982b), we 
obtained the probability distribution of one structure 
factor EHs , whose phase q~ns is a structure semin- 
variant with a value near 0 or 77", when anomalous 
scatterers are present (see Appendix). The condi- 
tional probability distribution of q~H, assuming as 
known the magnitude IEHJ has a unique maximum at 
2~0H, = -  ~. This result implies that for the single 
phase the increment of the phase arising from 
anomalous scattering is -so/2. Hence, when one 
deals with the OPSSs by making use of (8), a 
modified form should be employed: 

~0H + ~0n, ----- nTr -- sO/2. (25) 

With a cos/3 = ZpKcos (~on + ~o~), a sin 13 = 
Y pKsin(~on + ~0~,) and combination with (25), (23) 
becomes 

P ( ~ 0 H )  = [2trio(a)]-' exp [a cos (q~Hs --/3)], (26) 

where 

a = Kcos (nrr - s~/2) 

+ Ksin - (27) 

tan/3 = [ Z  EHE~, sin ( n ~ -  gV2)] 

[ ]_l 
x Z [EnE~, I cos (nrr - so/2) . (28) 

Provided that the variance of the distribution (26) is 
small, i.e. a is large, (26) has a unique maximum at 
~ons=/3. The larger a,  the more reliable is the ~0H, 
estimated by (28). Since the sine part of (28) is gen- 
erally small, the estimated value of ~On, is determined 
by the sign of the cosine part to be near 0 or 77". 

Table 2. Average magnitudes o f  the errors in the 
estimated TPSS values 

The  2000 for  cocaine methiodide  (1) and 1931 for  rubredoxin  (2) 
are divided into groups,  each contains 200 da ta  but  the last for  
rubredoxin  containing 331 data.  

(Igl) (A) (ko,- ~el) (o) 
G r o u p  no. (1) (2) (1) (2) (1) (2) 

l 1.79 1.81 5789 224 0.5 l.l 
2 1.44 1.36 3591 86 0.9 1.7 
3 1.24 1.15 2581 58 1.2 1.9 
4 1.07 1.01 1876 39 1.3 2.2 
5 0.91 0.87 1397 29 1.4 2.7 
6 0.80 0.79 1041 21 1.5 3.2 
7 0.68 0.65 745 15 1.7 3.9 
8 0.55 0.53 506 9 2.3 5.0 
9 0.40 0.32 269 4 2.9 9.6 

10 0.26 115 5.5 

If the positions of heavy atoms are available, the 
known structure information can be utilized to 
improve the estimates (Fan & Gu, 1985). From the 
product of (26) and Sim's (1959) distribution, (27) 
and (28) become 

a = Kcos (nrr - ~/2) + x cos ~0H~,O 

+ 7.Ksin (n~ - ~/2) + x sin q~n,,o , (29) 
p 

]_l 
x K cos (nrr - ~/2) + x cos ~0H,,e , 

where 

(30) 

(Z x = 20-2 Z [EHEH,.Q[, 

EH,.e is the heavy-atom contribution to EH, and the 
corresponding phase is ~OH,,O, and Zu is the atomic 
number of the uth unknown atom in the unit cell. 

3. Applications 

The formulas for the TPSS and OPSS estimates were 
tested with error-free diffraction data. The 
normalized structure-factor magnitudes IE.I and the 
true phases ~oI-i were calculated using the known 
atomic coordinates from a small molecule, cocaine 
methiodide (Shen, Ruble & Hite, 1975), C18H24NO4 I, 
space group P21212~, Z = 4 with Mo Ka wavelength 
up to 20 = 50 °, and a protein, rubredoxin (Adman, 
Sieker, Jensen, Bruschi & LeGall, 1977), 
C245FeN58OsoS5 (H atoms not included), space group 
P21, Z = 2 with Cu Ka wavelength to a resolution of 
1.5 A. 
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3.1. Test o f  the T P S S  estimates 

For cocaine methiodide, the calculations were 
done for 2000 TPSSs of three types of H,., namely 
Hi=-h,k, l ,  h,-k,l and h,k,-[ with IE >0.1 [ E  = 
(E.IIE ,I)"21. The results were arranged in 
descending order of A values. Table 2 gives the 
averages <IEI>, <h> and the error <l~/-  ~0el> (~o, and ~o e 
denote true and estimated values of the TPSS, 
respectively) in the ten groups, each containing 200 

188 
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184 

o <, S 
> 

. . . . .  Av,,  ' , 

2 4 6 6 188 

 t(o) 
(a) 

186 

184 

182 

180 

o 

s~ 
5 

3 

-2 0 

> 

• I . . . .  

. . . . .  Q /  . . . . . .  
2 4 182 184 186 

/or (°)  
(b) 

Fig. 1. Scatter diagrams of  toe v e r s u s  ~o, for the TPSS estimates, as 
well as the lines ~oe = ~p,, (a) using 116 data with IEI > 1.7 for 
cocaine methiodide, (b) using 125 data with [El > 1.7 for 
rubredoxin. 

data. A scatter diagram of ~o e versus ~o t is shown in 
Fig. l(a). 

1931 TPSSs of Hi = h,-~,l type with Igl > 0.1 were 
computed for rubredoxin. Table 2 also lists the 
averages for the nine groups in descending order of 
A values. Fig. l(b) shows a scatter diagram of ~o e 
versus q~t. 

The computational results show that, firstly, a 
large number of estimates of the TPSSs can be 
obtained by (8) and (9) with quite a good accuracy in 
a statistical sense. Secondly, the larger the A values, 
i.e. the smaller the variance of the distribution (17), 
the closer the agreements between ~o e and ~ot. The 
errors (l~ot- @el) decrease also with increasing IEI, as 
is shown in Fig. 2. Fig. 1 shows that for the large IE 
values the diagonal distribution holds, even in the 
protein case. Finally, owing to the relative weakness 
of the anomalous-scattering intensities, the errors are 
larger for the protein structure than for the small- 
molecule structure. From Fig. 2, we see that the 
average errors begin to increase substantially for Igl 
< 0.5 for cocaine methiodide but for IEI < 0.8 for 
rubredoxin. 

3.2• Test o f  the O P S S  estimates 

In the space group P212s2n, the ~Pn, is of three 
fOrlTIS: ~D0,2k,21, ~D2h,0,21, ~2h,2k,0" The results of the three 
kinds of phase were arranged in descending order of 
ce values for cocaine methiodide. Table 3 was con- 
structed using the top 121 with a _> 0.5 by accumu- 
lation into the four groups shown. The seventh 
column (Nwr) shows the number of signs of cos ~ns 
incorrectly estimated. 

In the space group P21, there is only one kind of 
~Hs, ~2h,0,21" In order to examine the influence of the 
strength of the anomalous signal on the estimates, 
the three derivative structures were made from rubre- 
doxin by replacing the Fe atom by Cd, Pt and U 

t 

Io \ o-cocaine methiodide 
% 

g ~ o-rubredoxin 

\ 

2 , , - ~ o  ..~L.o..Q_ o_.~...a. - , . _ _ _ , _ _ _ ~  , . __ ._ . . __  
0 - - 0 ~ 0 _ . . _ 0 ~  -,o 

0 i i i i i i ! I I I I I I , i , , i , i 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.8 l .g  2.0 2.2 

<IEI> 

Fig. 2. The error (l~0, - ~oel) distribution of the TPSS estimates as a 
function of ([El). The data were ranked on [E I and the averages 
<lgl> and <1~,- ~el> were computed for the ranked groups of 
100 data. 
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Table 3. Average magnitudes of  the errors in the 121 
seminvariants accumulated in groups according to Olmi n 

for cocaine methiodide 

G r o u p  N u m b e r  
no. in g roup  a ~ n  

1 21 10.0 
2 46 5.0 
3 91 1.5 
4 121 0.5 

<~> <IE~,I> (l~ou,- ill) (o) Nwr  

18.6 1.57 0.5 0 
12.2 1.37 0.7 0 
7.7 1.22 0.7 0 
6.0 1.08 8.3 5 

atoms, respectively. The results were arranged in 
descending order of a values and those for the top 
30 are listed in Table 4. The last column (Per) gives 
the percentage of the seminvariants with the sign of 
cos ~0ns correctly determined. 

The results show that, as expected, the larger the a 
values, the more reliable are the phase estimates. 
Comparison of Table 3 with Table 4 indicates that 
the results are much better in the small-molecule case 
than in the macromolecular case. For cocaine 
methiodide, all the signs of the cosines are correctly 
determined when a _> 1.5. It can be seen from Table 
4 that the results are relatively poor for rubredoxin 
containing one Fe atom but the estimates are grad- 
ually improved when the heavy atom changes from 
iron to uranium. The average value of a also 
increases with the replacement of the heavier atom. 
For a given a value, there are far more seminvariants 
reliably estimated in the case of the U atom as major 
anomalous scatterer than there are in the case of the 
Fe atom. The results calculated from (29) and (30) 
are also given in Table 4 by the entries for method II, 
which show that the incorporation of the heavy- 
atom structure information leads to an effective 
increase in the number of seminvariants whose 
values are correctly estimated. 

4. Concluding remarks 

The extension of the probabilistic estimates of the 
TPSIs from Hauptman's  (1982b) formula to the 
TPSS estimates has been proved to be valid by 
applications to the known structures using error-free 
data. In the case that the variance of the distribution 
is small, which corresponds to the large [E I value 
involved, the estimate is reliable. The analytical 
features are consistent with those of the TPSI esti- 
mates (Guo, Blessing & Hauptman,  1991). 

The estimate formulas for the OPSSs (near 0 or rr) 
when anomalous scatterers are present, assuming as 
known the magnitudes IE.sl, Ig.I, IE ,I and the TPSS 
~on + ~on,, have also been tested with the error-free 
data. The accuracy of the estimates depends on the 
complexity of the structure and the strength of the 
anomalous scattering. Quite accurate estimates can 
be obtained from smaller structures. The fraction of 

Table 4. Average magnitudes of  the errors in the top 
30 seminvariants arranged in descending order of a for 
rubredoxin and its Cd-, Pt- and U-derivative struc- 

tures 

Method  I gives the results calculated f rom (27) and (28) and 
method  II those f rom (29) and (30). 

Heavy  
Method  a tom (a )  (IE.J> ([~on,- ill) (°) Nwr  Per (%)  

Fe 0.9 1.27 60.3 10 66.7 
I Cd 1.4 1.40 43.1 7 76.7 

Pt 3.4 1.37 31.4 5 83.3 
U 4.9 1.36 15.5 2 93.3 

Fe 3.3 1.24 49.9 8 73.3 
II Cd 4.3 1.33 31.3 5 83.3 

Pt 7.2 1.33 7.7 1 96.7 
U 9.3 1.36 8.5 1 96.7 

seminvariants correctly estimated may reach more 
than 90% for macromolecular structures containing 
as many as 400 non-H atoms with such a major 
anomalous scatterer as a U atom in the asymmetric 
unit. The improvement of the accuracy can be 
achieved by the incorporation of the heavy-atom- 
structure information. These results suggest that the 
method for the TPSS estimates described here as a 
supplement to existing techniques may find applica- 
tion in the determination of real crystal structures. 
An analogous study on the three-phase structure 
seminvariants is in progress. 

APPENDIX 

The reciprocal-lattice vector Hs is fixed and the 
atomic position vectors rj are assumed to be the 
primitive random variables. Following the work of 
Hauptman (1982b), the joint probability distribution 
of the magnitude IEHsl and the phase ~n, of the 
structure factor/ins,  where ~i~ is a structure semin- 
variant having a value near 0 or ~, when anomalous 
scatterers are present, is given by the twofold integral 

oo 2~ 

P(R,ck)=[R/(27r) 2] f f p e x p [ - i R p c o s ( O -  4))] 
p=O o=0  

N / m  

× I-I qj(p,O)dpdO, (A1) 
j = l  

where 

qj(p,O)= ((i]fjl/al/2)p ~. cos (~j+ 2rrHs" Ci" r j -  O)l 
i=1 rj 

= - mp2(lfjl2/4a)[1 + cos (28 j -  20)]. (A2) 

Substituting (A2) into (A1) and completing the two- 
fold integral, we have 

P(R, ck) = (R/Tr) exp [ - R 2 + XR 2 cos (2~b + ()]. (A3) 

When R = [EnJ is given, the conditional probability 
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distribution of ~o., is 

P(rk/R) = [2"rrlo(XR2)] -~ exp [XR 2 cos (25 + ~:)], (A4) 

where s c is defined in (2)-(5) and X in (15). Clearly, 
(A4) has a unique maximum at 2~pa, = -- S c when XR 2 
is large. 
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Abstract 

A simple method of describing the scattering from an 
atom continuously distributed in the unit cell is 
proposed. Some experimental applications in struc- 
tural investigations are presented. 

I. Introduction 

It is not unusual in structural analysis that an atom 
does not occupy a definite point position in the unit 
cell but is distributed among a number of positions, 
discretely or continuously. The problems connected 
with atomic disorder in crystals have been discussed 
extensively for a long time (Krivoglaz, 1969; Dunitz, 
Schomaker & Trueblood, 1988; Kuhs, 1992). If the 
number of occupied positions is finite, it is possible 
to refine these positions with partial populations. For 
more complicated distributions, caused by statistical 
displacements or thermal vibrations, a general 
approach has been introduced by Johnson (1969). It 
is based on a differential expansion of the atomic 
Gaussian probability density function (p.d.f.), which 
after Fourier transformation leads to a series expan- 
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sion of tensorial coefficients. The limitations of this 
approach were discussed by Kuhs (1992). However, 
there are many cases when one wishes to express the 
p.d.f, for disordered atoms in real space. This p.d.f. 
will not only be similar to the Guassian or Johnson 
expansions but, also, its type may be established on 
the basis of physical considerations. Sometimes, it is 
possible to parametrize such a p.d.f, with a small 
number of parameters and use these as variables in 
the refinement. This direct approach to define the 
p.d.f, of disordered atoms was applied in the struc- 
tural investigations of two compounds. Preliminary 
results were published in brief (Zhukov, 1991; 
Chernyshev, 1992). In this paper, a more detailed 
description is presented. 

2. An atom uniformly distributed on a sphere 

Let us define the average unit cell (a.u.c.) as that 
obtained by averaging the crystal unit cells. Such 
a.u.c.'s are used in ordinary structure-factor calcula- 
tions. Let atom A in the a.u.c, be continuously 
distributed with equal probability on some set of 
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